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INTRODUCTION: 9 

 Blood sampling is a non-invasive technique that provides a sample matrix for various 10 

analyses, including hematology and plasma chemistry, that are commonly used for diagnosis and 11 

monitoring of individuals or groups of animals in health and disease (Filho et al. 1992; Campbell 12 

2012). Although baseline and reference data of blood analytes have been established for numerous 13 

species in veterinary medicine, they still need to be defined for a variety of commercially important 14 

cultured fish species (Berillis 2017). As described by Fazio (2019), fish blood analysis has become 15 

an important diagnostic tool in aquaculture for assessing the health status of fish in response to 16 

changes related to water quality, nutrition, and disease. The use and validation of standardized, 17 

non-lethal, and inexpensive methodologies for monitoring fish health are necessary for optimizing 18 

husbandry protocols for intensive aquatic animal production.  19 

 Variations in blood can be caused by intrinsic (e.g., age/life stage) and extrinsic (e.g., water 20 

quality, seasonality, and handling stress) factors (Clauss et al. 2008). In addition to providing 21 

baseline health data of an individual animal or a group of animals, hematology and plasma 22 

chemistry end points can be used to identify the effects of environmental stressors (Burgos-Aceves 23 

et al. 2019), metabolic changes (Eddy and Handy 2012),  and underlying or early onset of disease 24 

(Grant 2015; Fazio 2019). Establishing baseline blood analyte data can be important in evaluating 25 

the health of individual stocks as shown in studies with commercially farmed fishes. Such 26 

examples include dietary inclusion trials with juvenile yellowtail Seriola quinqueradiata (Ren et 27 

al. 2008), comparison of blood chemistry data to elucidate the cause of death in bluefin tuna 28 
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Thunnus orientalis including assessments of fish exhibiting normal and abnormal swimming 29 

behavior (Honryo et al. 2019), and documenting stress responses and impact of transport on 30 

juvenile yellowtail kingfish Seriola lalandi (Moran et al. 2008). Despite the potential of blood 31 

analyte evaluation as a tool to assist in monitoring the health of marine fishes, baseline data is 32 

lacking for many commercially important marine finfish species.  33 

 Similar to other commercially farmed Seriola species, Almaco Jack have a fast growth rate, 34 

high market value, and are increasingly well-regarded among chefs for their versatility in both 35 

cooked and raw preparations (Roo et al. 2014; Fernández-Palacios et al. 2015; Sicuro and Luzzana 36 

2016). Growth in the aquaculture sector has led to product diversification and thus, intensive 37 

culture of new high-value finfish like Almaco Jack. As such, domesticated broodstock need to be 38 

established along with health management protocols that ensure reliable production of high-quality 39 

gametes and juveniles. The objective of this study was to compare hematology and plasma 40 

chemistry data for adult wild-caught Almaco Jack (Seriola rivoliana) at time of capture and again 41 

by 16 weeks following a period of acclimation to a recirculating aquaculture system and 42 

hyposalinity treatment. 43 

 44 

MATERIALS AND METHODS: 45 

Broodstock Collection and Maintenance 46 

 A total of 30 adult fish were caught via hook and line in the eastern Gulf of Mexico, 47 

approximately 120 miles offshore (salinity, 35 ppt) from Madeira Beach, Florida. Blood was 48 

collected from a random subset of these wild adult Almaco Jack (n=13) immediately after capture. 49 

A second, but different subset of these fish (n=12) were then sampled at 16 weeks post capture 50 

(following acclimation to the new captive environment). The authors chose to only sample a subset 51 

of fish for this trial due to concerns regarding the impact of handling stress and blood sampling on 52 

spawn capability. All fish from which samples were collected were visually examined and found 53 

to be apparently healthy without any external injuries or other overt abnormalities. Blood (3 ml) 54 

was taken from the caudal vein using a 23-gauge needle attached to a heparinized syringe. No 55 

sedation was used prior to blood collection. Heparin was thoroughly expelled from the syringe 56 

before use and transferred into a vacutainer tube coated with lithium heparin (Sigma-Aldrich, St. 57 

Louis, MO). The time elapsed between hooking the fish and blood collection ranged from 22-28 58 

minutes for wild caught specimens. Fish were transported from Madeira Beach to Mote 59 
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Aquaculture Research Park (MAP) in Sarasota, Florida, using a specialized live-hauler designed 60 

with four individual compartments (capacity, 1m3 each, filled with natural seawater at 35 ppt), 61 

oxygenation, and separate controls for each. The total transport time from the point of capture to 62 

stocking at MAP was approximately 15 hours. Upon arrival to MAP, all fish were immersed in a 63 

freshwater bath for 10 minutes to remove external parasites. Fish were placed in an indoor, 64 

photoperiod (12H light) and temperature (26°C) controlled recirculating tank system. The system 65 

consisted of a green, fiberglass tank (28m3) equipped with solids filter, bio-filter, a protein 66 

skimmer, and UV sterilization. Salinity was maintained at 35 ppt for the first two weeks of 67 

acclimation. This was followed by a 45-day hyposalinity (15 ppt) exposure, a procedure used to 68 

control monogenean parasites found during initial health examinations (Rigos et al. 2001). In 69 

addition to monogeneans, digenean parasites were also observed; both groups are commonly 70 

identified in Seriola sp. (Ogawa 2015; Hirazawa et al. 2016, 2017; Valles-Vega et al. 2019). The 71 

same sampling methods for collection of blood were used with both groups of fish. A total of 16 72 

weeks elapsed between the time the fish were initially brought to MAP and the blood samples 73 

were taken from a second subset of fish (now newly acclimated broodstock). Fish were presumed 74 

to have successfully adjusted to their captive environment as evidenced by their continued growth 75 

throughout the acclimation period and observed volitional spawning documented two weeks 76 

following the completion of the hyposalinty treatment (Patrick et al. 2019). Throughout the entire 77 

time from capture to sampling at 16 weeks, fish were fed a daily diet of squid (50%) and threadfin 78 

herring Opisthonema oglinum (50%) at 3% of the total tank biomass. 79 

 80 

Hematology and Blood Chemistry 81 

 All collected blood samples were kept cold from the time of collection and processed 82 

within a maximum of 24 h post sampling. Packed cell volume (PCV), total solids (TS), and visual 83 

plasma color were assessed after centrifugation (Combo V24T Centrifuge, LW Scientific Inc., 84 

Lawrenceville, Georgia, USA) of a capillary tube for fish at time of capture. Total solids were 85 

determined by clinical refractometer (Master-SUR/Nα Clinical Automatic, Atago USA, Inc., 86 

Bellevue, Washington, USA). The following procedures were performed for both subsets of fish. 87 

Two blood films were prepared from each sample, air-dried, and stained with Wright-Giemsa 88 

(Harleco®, EMD Millipore, Billerica, Massachusetts, USA). Blood film evaluation included a 89 

white blood cell (WBC) estimate (Weiss 1984), a 200-WBC differential, and blood cell 90 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

morphological evaluation. Whole blood was then centrifuged and plasma harvested and 91 

immediately frozen at ultra-cold freezer temperature (-80ºC). Within one month after sampling, 92 

frozen plasma samples were shipped to the University of Miami Avian & Wildlife Laboratory 93 

(Miami, Florida USA). Plasma was analyzed using a dry slide chemistry analyzer Ortho 250XR 94 

(Ortho Clinical Diagnostics, Rochester, New York USA). The following were assessed: hemolysis 95 

index, lipemia, anion gap, aspartate aminotransferase (AST), blood urea nitrogen (BUN), 96 

bicarbonate (CO2), calcium, chloride, cholesterol, creatine kinase (CK), gamma-glutamyl 97 

transferase (GGT), glucose, potassium, magnesium, phosphorus, sodium, total protein, 98 

triglycerides, uric acid, and calculated osmolality. Plasma protein electrophoresis was performed 99 

using SPIFE 3000 system (Helena Laboratories, Beaumont, Texas USA) to measure the 100 

concentrations of 6 fractions. The gels were run according to manufacturer’s instructions and 101 

protein fractions were quantified using gel electrophoresis and laser densitometry as described 102 

previously (Christiansen et al. 2015). Each protein fraction (protein fractions 1-6) was calculated 103 

using the percentage of the fraction multiplied by the total protein concentration.  104 

 105 

Statistical Analysis 106 

 Data were visually examined for potential outliers and no values had to be excluded from 107 

the dataset. Blood analyte data are reported as mean, median (minimum, maximum). Distributions 108 

of blood analytes were compared between blood obtained at time of capture and again at 16 weeks 109 

post capture by using the non-parametric Wilcoxon Rank Sum test. The proportions of Almaco 110 

Jack with a hemolysis index = 1 were compared between groups by using a chi-square test. Values 111 

of p < 0.05 were considered significant. All analyses were conducted using Statistix 10 for 112 

Windows (Analytical Software, Tallahassee, Florida). 113 

 114 

RESULTS 115 

 Among fish sampled, an increase in growth (mean body weight, g) was observed (19%) 116 

between the initial (May) and final (September) health evaluations of fish from each time point. 117 

At the time of capture, Almaco Jack (n=13) weighed an average of 3,276 ± 504 g (58.85 ± 3.4 cm 118 

fork length; 63.2 ± 3.4 cm total length). Captive held fish (n=12) weighed an average of 4,007.2 ± 119 

370 g (62.8 ± 2.7 cm fork length; 62.8 ± 4.1 cm total length).  120 
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 Blood data is presented in Table 1. Plasma color was clear for most samples. More wild 121 

Almaco Jack (9/13; 69%) had a hemolysis index = 1 than acclimated (5/11; 45%); but this 122 

difference was not significant (P = 0.23). All wild (13/13) and acclimated (12/12) Almaco Jack 123 

had lipemia index = 0. Representative images of blood cell morphology are shown in Figure 1. 124 

Blood film evaluation revealed minimal thrombocyte clumping and WBC clumping was absent. 125 

Lymphocytes were the predominant WBC type. Heterophils had a variable number of rod-shaped, 126 

orange granules and pale blue cytoplasm, and there was mild left-shifting. Red blood cells were 127 

consistently mature (i.e., absence of polychromasia). Thrombocytes appeared adequate in number 128 

with low numbers of small thrombocyte aggregates present in all fish. Compared to acclimated 129 

fish, wild-caught fish had significantly higher (P < 0.05) absolute white blood cell (WBC) counts, 130 

while acclimated fish had lower sodium, chloride, and calculated osmolality, blood urea nitrogen, 131 

and higher calcium, calcium to phosphorus ratio, cholesterol, glucose, total protein, plasma protein 132 

fractions (except for fraction 1), potassium, and triglycerides. Figure 2 shows two representative 133 

electrophoretograms of wild-caught and acclimated Almaco Jack without hemolysis.  134 

 135 

DISCUSSION: 136 

The information presented herein documents baseline blood data for wild-caught Almaco 137 

Jack from the Gulf of Mexico and describes their physiological responses 16 weeks after capture 138 

and 6 weeks post hyposalinity treatment. Prophylactic techniques, such as incremental salinity 139 

changes, are sometimes administered in aquaculture to limit the introduction of pathogens to the 140 

captive environment when new fish are introduced to an established system (Segawa et al. 2000; 141 

Brazenor and Hutson 2015). The observation of only subtle hematological changes was somewhat 142 

unexpected, given that stress of captivity could have shown some effects. Although the observed 143 

significant difference in absolute WBC may not be clinically relevant and within expected 144 

variation of analytical precision, especially given the lack of differences in specific WBC types, 145 

this finding may be explainable by biological variation and/or non-specific antigenic stimulation 146 

in wild fish. This may have resulted from parasitic accumulation in wild fish, as monogeneans and 147 

digeneans are common in wild populations of Seriola sp. (Sharp et al. 2004; Hirazawa et al. 2010; 148 

Tamaru et al. 2016). An additional consideration for lower WBC concentrations in acclimated fish 149 

includes possible immunosuppression associated with stress in captivity. Although stress was not 150 

manifested in the leukogram (i.e., lack of heterophilia and/or lymphopenia), higher glucose in 151 
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acclimated fish could suggest a stress response or effects from dietary differences. However, 152 

artifactual alterations in plasma glucose need to be considered due to processing within 24 hours 153 

and possible consumption by red blood cells, although a recent study of another non-mammalian 154 

vertebrate species with nucleated red blood cells showed that plasma glucose was consistent in 155 

blood samples that were refrigerated up to 48 hours (Kunze et al. 2020).  156 

The second subset of fish were sampled after a completed prophylactic treatment. Changes 157 

in sodium, chloride, and calculated osmolality suggest osmoregulatory adjustments occurred 158 

following this extended treatment. Since blood was sampled 6 weeks after hyposalinity treatment, 159 

data presented herein likely reflect an adjustment from 35 to 15 ppt and back again to 35 ppt. 160 

Electrolytes were still not adjusted 6 weeks after completion of the hyposalinity treatment, 161 

indicating that adjustment of electrolyte hemostasis takes at minimum 6 weeks.  162 

The identified plasma biochemical differences between wild-caught and acclimated fish 163 

indicate responses to dietary, physiological variation, and/or environmental changes.  Of notable 164 

interest were prominent changes in plasma lipids and triglycerides after acclimation. These 165 

findings presumptively resulted from differences in diet (i.e., dietary composition and/or quantity) 166 

as fish were transitioned from their natural diet (Manooch and Haimovici 1983; Barreiros et al. 167 

2003) to a fresh frozen diet consisting of Atlantic thread herring (Opisthonema oglinum) and squid. 168 

Based on the gut content analysis of this species in the wild, Almaco Jack can be considered almost 169 

exclusively piscivorous, though they are opportunistic feeders. Lipid and fatty acid composition 170 

of diet reportedly are well known factors affecting fish reproductive success and survival of 171 

offspring (Izquierdo et al. 2001, 2015). Results from this study highlight the need for further 172 

research on optimizing egg and larval quality through management of nutrition for Almaco Jack.  173 

In addition to dietary considerations, higher plasma calcium and calcium to phosphorus ratio in 174 

acclimated fish may reflect differences in environmental calcium compared to their natural habitat 175 

or physiological variation of protein-bound calcium in actively reproductive females as supported 176 

by higher total protein (Campbell 2012). Protein fractions have previously been reported in other 177 

fish species, including 6 and 5 fractions in Rainbow trout Oncorhynchus mykiss (Manera and Britti 178 

2008) and Koi Cyprinus carpio (Christiansen et al. 2015), respectively. Considerations for 179 

potassium variations in this study suggest dietary differences, environmental changes (e.g., 180 

cutaneous loss), or effects from hemolysis although minimally expected by the utilized chemistry 181 

analyzer in this study. 182 
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The observed plasma biochemical data suggest that Almaco Jack can adjust quickly to 183 

environmental and dietary manipulation as evidenced by the observation of natural spawning 184 

among broodstock within five months of collection (Patrick et al. 2019). This study is the first to 185 

report baseline hematology and plasma biochemistry data for Almaco Jack and describes 186 

consequent changes following prophylactic hyposalinity treatment and a period of acclimation. 187 

The data herein document novel and relevant health information regarding physiological responses 188 

of Almaco Jack to their new environment as captive broodstock. These findings serve as a baseline 189 

for development of broodstock health management protocols needed for commercial aquaculture. 190 
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Table 1. Comparison of blood analytes between wild Almaco Jack (Seriola rivoliana) at time of 

capture (May) and 16 weeks post capture (September) following a period of acclimation to a 

Variable Unit Wild 

(At Transfer) 

N = 13 

Captive 

(16 weeks post capture) 

N = 12 

p 

Packed cell volume 

Total solids 

% 

g/dL 

44, 44 (30, 56) 

5.5 (5.0, 6.4) 

NP 

NP 

ND 

ND 

White blood cell estimate1 

Mature heterophils1 

Immature heterophils1 

Lymphocytes1 

Monocytes1 

Eosinophils1 

Basophils1 

x103/µl 

x103/µl 

x103/µl 

x103/µl 

x103/µl 

x103/µl 

x103/µ 

25.9, 25.9 (19.2, 32.5) 

3.1, 3.1 (1.6, 5.9) 

0.3, 0.3 (0.0, 1.2) 

17.0, 18.0 (13.0, 22.0) 

5.5, 4.8 (3.7, 9.6) 

0.1, 0.0 (0.0, 0.4) 

0.0, 0.0 (0.0, 0.0) 

21.6, 22.0 (15.5, 27.1) 

2.6, 2.4 (1.5, 4.6) 

0.2, 0.1 (0.0, 0.5) 

14.7, 14.5 (11.0, 19.0) 

4.2, 4.3 (2.5, 6.4) 

0.0, 0.0 (0.0, 0.0) 

0.0, 0.0 (0.0, 0.0) 

0.04 

0.28 

0.38 

0.06 

0.09 

0.99 

0.99 

Anion gap  

Aspartate aminotransferance2  

Blood urea nitrogen 

CO2 

Calcium  

Calcium to phosphorus ratio 

Chloride  

Cholesterol  

Creatine kinase 

Gamma-glutamyl transferase 

Glucose  

Potassium  

Magnesium  

Phosphorus  

Sodium  

Total protein 

Triglycerides  

mmol/L 

U/L 

mg/dL 

mmol/L 

mg/dL 

- 

mmol/L 

mg/dL 

U/L 

U/L 

mg/dL 

mmol/L 

mg/dL 

mg/dL 

mmol/L 

g/dL 

mg/dL 

33.6, 14.0 (10.0, 214.0) 

45, 34 (15, 96) 

10.4, 11.0 (5.0, 15.0) 

9.1, 9.0 (5.0, 13.0) 

15.4, 14.8 (12.2, 20.5) 

1.4, 1.4 (1.1, 1.9) 

172, 172 (164, 178) 

235, 236 (152, 327) 

1720, 1300 (242, 3981) 

5, 5 (5, 7) 

77, 77 (51, 96) 

1.7, 1.4 (1.0, 3.1) 

4.4, 4.4 (3.0, 5.3) 

11.0, 10.2 (6.8, 16.8) 

201, 199 (188, 221) 

4.7, 4.6 (3.3, 6.1) 

48, 36 (17, 129) 

26.3, 27.0 (15.0, 36.0) 

58, 52 (10, 145) 

4.0, 4.0 (2.0, 7.0) 

11.0, 11.0 (9.0, 13.0) 

20.9, 19.6 (18.9, 24.7) 

1.9, 1.9 (1.5, 2.4) 

154 (151, 155) 

357, 364 (235, 409) 

1689, 1650 (161, 3263) 

5, 5 (5, 5) 

110, 106 (77, 164) 

2.9, 2.6 (1.7, 5.1) 

4.5, 4.5 (3.8, 5.5) 

11.1, 11.3 (8.3, 13.2) 

191, 190 (182, 199) 

7.0, 6.8 (5.9, 8.4) 

275, 248 (136, 435) 

0.07 

0.59 

< 0.01 

0.07 

< 0.01 

<0.01 

< 0.01 

< 0.01 

0.93 

0.99 

< 0.01 

< 0.01 

0.65 

0.32 

< 0.01 

< 0.01 

< 0.01 
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recirculating aquaculture system. All blood samples were obtained 6 weeks following an anti-parasitic 

hyposalinity treatment. Data are reported as mean, median (minimum, maximum). NP = not performed.  

 
1n = 13 wild Almaco Jacks and n = 10 captive Almaco Jacks 
2n = 13 wild Almaco Jacks and n = 11 captive Almaco Jacks 

Uric acid 

Osmolality, calculated 

mg/dL 

 

0.3, 0.4 (0.3, 0.4) 

382, 377 (357, 420) 

0.4, 0.4 (0.4, 0.4) 

362, 361 (346, 376) 

0.99 

< 0.01 

Total Protein  

Fraction 1 

Fraction 2 

Fraction 3 

Fraction 4 

Fraction 5 

Fraction 6 

g/dL 

g/dL 

g/dL 

g/dL 

g/dL 

g/dL 

g/dL 

4.3, 4.4 (2.6, 5.7) 

0.0 (0.0, 0.0) 

1.4 (1.1, 1.6) 

0.7 (0.6, 0.8) 

0.9 (0.8, 1.0) 

0.8 (0.7, 1.0) 

0.3 (0.3, 0.4) 

7.0, 6.8 (5.9, 8.4) 

0.0 (0.00, 0.01) 

2.11 (1.9, 2.2) 

1.21 (1.1, 1.3) 

1.44 (1.2, 1.7) 

1.44 (1.2, 1.7) 

0.68 (0.5, 0.7) 

< 0.01 

0.18 

< 0.01 

< 0.01 

< 0.01 

< 0.01 

< 0.01 
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